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Abstract. The problem of segmentation of lesion tissue in acute stroke
based on CT images is critically important for clinicians. In this paper we
describe a method of solving this problem exploiting state-of-art convo-
lutional neural networks, which are now widely used to segment medical
images. The final prediction is obtained as a result of averaging the pre-
dictions of 3 different U-Net-based models. The method was developed
within the framework of the ISLES-18 challenge and showed quite good
results on challenge’s dataset.

Keywords: Convolutional Networks, Stroke Lesion Segmentation

1 Introduction

Ischemic stroke occurs when the blood supply to an area of the brain is dis-
rupted, resulting in cells’ death. Defining the location of the affected area is a
key part of the decision-making process in acute stroke. At present, actually,
clinicians manually outline core lesions on MRI images. Comparing with MRI,
CT is more preferable due to its speed, availability and lack of contraindications.
However, now there are no accurate methods, either manual or automated, defin-
ing regions of damaged tissue based on CT images. That is why Ischemic Stroke
Lesion Segmentation Challenge (ISLES-18) [1] asks for advanced data analysis
techniques that could help to define these regions on perfusion CT images. In
recent years deep learning methods performed well in solving a wide variety of
image processing tasks [5,6], including medical ones [8,3]. In this work we propose
a method which combines inferences of several convolutional neural networks in
order to decrease variability of the result of the segmentation.

2 Data and problem formulation

ISLES-18 dataset contains image data for 63 stroke patients. For some patients
2 slabs are provided and in total there are 94 instances. For each instance CT
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brain image and binary segmentation mask of the stroke lesion are provided. CT
images have shape 5 × 256 × 256 × s where 5 stands for a number of perfusion
CT modalities and s is a number of slices, which varies from 2 up to 22. The
provided ground-truth segmentation masks were manually drawn on DW-MRI
images and have corresponding spatial shapes.

Fig. 1: An example of one slice of CT brain image and the corresponding segmentation
mask.

Our task was to develop an automated method for segmentation stroke lesion
based on CT images, which is quite challenging, taking into account the relatively
small amount of data, its anisotropy, different ways of obtaining input data and
target data (CT and MRI respectively).

3 Method

Since most of the images consist of 2 or 4 slices the use of 3D convolutional
networks is unfeasible. That is why in our method we use 2D convolutional
networks (the training and inference are performed on axial slices).

U-Net [8] is a fully-convolutional neural network architecture for segmenta-
tion, which is very popular in medical imaging. U-Net consists of a downsampling
branch which alternates convolutional and pooling layers and a symmetric up-
sampling branch which alternates convolutional and upsampling layers. Outputs
from layers of the downsampling branch are stacked with inputs of layers of the
upsampling branch. Thus, the network is able to combine patterns from different
scales in order to yield a more precise segmentation.

T-Net [7] is a variation of the U-Net architecture with convolutional layers
inserted to the connections between the branches, which slightly increase the
amount of processing at each scale.

In our method we ensemble both these architectures as well as a modification
of T-Net aimed at yielding a better result according to one of three quality met-
rics considered in the challenge. In each network we replace simple convolutional
layers with residual blocks [2] and add initial convolutional layers, which is a
standard approach to improve learnability of deep networks.

Preprocessing As it turned out, there are slices in the data, on which there is
almost no brain tissue, and therefore, no stroke. In order not to learn on such
untypical edge cases we leave out the slices with background area greater than a
fixed threshold and predict an empty mask for them; the threshold was chosen

86



Ensembling CNN for Stroke Lesion Segmentation 3

Fig. 2: T-Net architecture

as the maximal background area among the slices with lesions in the train set.
Then we crop all images to their 3-dimensional bounding boxes and rescale them
to the shape 256 × 256 in the axial plane.

Setup In our experiments we used Adam optimizer [4] with a constant learning
rate of 10−3 or 10−4.

To test the models’ performance we used group 5-fold cross validation. In
order to avoid overfitting the splits were made so that all images belonging to
the same patient were presented in the same fold. We used the following qual-
ity metrics: Dice coefficient, Hausdorff distance and average symmetric surface
distance (from the ground truth), which were proposed by the organizers of the
challenge and also precision and recall coefficients. Each metric highlights differ-
ent aspects of the segmentation quality, e.g. Hausdorff metric is very sensitive to
false positives that are located far from the ground truth, whereas Dice metric is
much more robust and estimates the fraction of the intersection of our prediction
and the ground truth.

As loss functions we used simple binary cross entropy (BCE-loss) and also
weighted binary cross entropy (WCE-loss)

WCE(x, y) = −
∑

i

yi log(σ(xi)) + wi(1 − yi) log(1 − σ(xi)),

where x is the network’s output, y is the target, σ is the sigmoid function,
which transforms network’s outputs into probabilities; wi = 1 + 0.1d(i, y) –
weights for background pixels, d(i, y) is the distance from the i-th pixel to the
lesioned region, i.e. this loss strongly penalizes distance from the ground truth
false positives. We exploited this fact in order to train model that would yield a
good result according to the Hausdorff metric.
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Also, in order to overcome the dataset size limitations we use data augmen-
tation techniques: random flips with respect to the sagittal plane and random
rotations in the axial plane.

Models In our method we use 3 models

– U-Net with residual blocks operating on images downsampled by a factor of
4 along each dimension. During training BCE-loss was optimized.

– T-Net (Fig. 2). This model differs from U-Net only by the presence of addi-
tional convolutional layers between the branches, however, this change sig-
nificantly influences the output, as can be seen in Fig. 3.

Intuitively, both of the above models make relatively coarse predictions.

– A model similar to T-Net, but deeper and operating on images in the original
scale (T-Net HD). Due to high resolution of the input and network’s depth
this model makes more localized predictions. During training WCE-loss was
optimized, which, as expected, results in improvement of the Hausdorff score
by 10% (comparing to the same model but trained with simple BCE-loss,
see Tab. 1).

The final segmentation, which is equivalent to a pixelwise binary classifica-
tion, is performed according to the averaging decision rule

zi = 1(
σ(x1

i )+σ(x
2
i )+σ(x

3
i )

3 ≥ 0.5)

where x1, x2, x3 are the outputs of the U-Net, T-Net and T-Net HD respectively.

4 Results

Table 1 shows the models’ performances according to considered metrics. As
seen, averaging improves both Dice score and Hausdorff distance, which is ex-
pected, as averaging unites confident predictions and effectively filters out ran-
dom outliers.

Model Mean Dice Mean HD Mean ASSD Mean Precision Mean Recall

U-Net 0.52 ± 0.01 29.65 ± 0.49 3.19 ± 0.26 0.60 ± 0.01 0.53 ± 0.01
T-Net 0.51 ± 0.01 28.45 ± 0.34 3.36 ± 0.27 0.59 ± 0.01 0.52 ± 0.01
T-Net HD 0.51 ± 0.01 24.75 ± 0.01 2.51 ± 0.27 0.64 ± 0.01 0.50 ± 0.01
T-Net HD-BCE 0.51 ± 0.01 27.58 ± 1.32 2.80 ± 0.38 0.63 ± 0.01 0.49 ± 0.01

Averaging 0.53 ± 0.01 23.29 ± 0.02 2.44 ± 0.32 0.65 ± 0.01 0.52 ± 0.01

Table 1: Segmentation results. T-Net HD-BCE denotes the same model as T-Net HD
but trained with simple BCE.
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Fig. 3: An example of the final segmentation. From left to right: predicted by U-Net,
T-Net, T-Net HD and averaged probability maps, binary segmentation mask and the
ground truth.

5 Conclusion

From the very beginning of the challenge to the moment of writing this paper,
we tested a large number of models with different setups and, finally, averaged
predictions of the best of them. In most cases this method makes visually ad-
equate predictions and yields quite good quality (average values of the quality
metrics suffer due to several complex cases, our method can not cope with). Now
we can not say with certainty whether the method is applicable in practice, since
it could be possible to identify a particular group of people for whom the method
yields acceptable quality or it can be useful in another formulation of the prob-
lem, for example, in determining the volume of the affected area. Unfortunately
now the competition is not over yet and we can not compare our results with
other participants, but it may well be impossible to achieve a significantly better
result using deep learning methods. In the future work, in order to improve the
method one can try to get a final prediction by ensembling more models and
applying more sophisticated postprocessing techniques.
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